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a b s t r a c t

The internal rate of return (IRR) is generally considered inferior to the net present value (NPV) as a tool
for evaluating and ranking projects, despite its inherently useful comparability to the cost of capital and
the return of other investment opportunities. We introduce the ‘‘selective IRR’’, a return criterion which,
as a selection of an extended set of possible IRRs, is NPV-consistent. The selective IRR always exists, is
unique, easy to compute, and does not suffer from drawbacks that befall the project investment rate, the
only other known NPV-consistent return criterion.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Despite the well-known shortcomings of the internal rate of re-
turn (IRR) as a criterion for evaluating the desirability of invest-
ment projects, it continues to be widely used in practice (Schall
et al., 1978; Stanley and Block, 1984; Graham and Harvey, 2001;
Brounen et al., 2004). Finance textbooks (e.g., Brealey and Myers,
1991; Berk and DeMarzo, 2007), on the other hand, usually sug-
gest that selecting profitable investments amounts to undertaking
projects with positive net present value (NPV). The greatest con-
ceptual difficulty for the practically important IRR criterion is its
failure to generally provide a unique value, against which to com-
pare the company’s hurdle rate in order to arrive at a decision that
is consistent with the NPV rule (Samuelson, 1937).1 Multiple fixes
have been proposed in the literature to guarantee existence and
uniqueness, but usually they entail changing the underlying prob-
lem, e.g., by treating intermediate project cash flows differently ac-
cording to their signs (resulting in the modified internal rate of re-
turn orMIRR;DuVillard, 1787), by truncating the timehorizon so as
to maximize NPV (resulting in a different project; Arrow and Lev-
hari, 1969), or by changing the objective from value maximization
to growthmaximization (Dorfman, 1981). All of them are inconsis-
tent with the NPV rule.

∗ Tel.: +41 0 21 693 01 14; fax: +41 0 21 693 00 20.
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1 The ‘‘hurdle rate’’ is defined here as the incremental cost of capital (or marginal
cost of capital), that is the weighted average cost of capital for the additional capital
required for the investment project under consideration (Downes and Goodman,
1998, pp. 265/273). There are other uses of the term hurdle rate in the literature;
see, e.g., Berk and DeMarzo (2007, pp. 738–739), Bodie et al. (1996, p. 247), or Dixit
(1992).
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In this paper, we propose a simple selective IRR criterion, which
produces a unique number, consistent with both the definition of
IRR (in the sense that it is equal to exactly one of its possible values)
and the NPV rule. Our results are related to the project investment
rate (PIR) proposed by Teichroew et al. (1965a,b) which while
producing NPV-consistent investment decisions is as a criterion
generically different from any IRR and also suffers from a ‘mixing
inconsistency’ (see Example 8). The selective IRR amounts to a
single-valued selector defined on the set I of all possible (real-
valued) IRRs, that (for any hurdle rate r) picks either the least
element of I which exceeds r when NPV is positive or the largest
element of I smaller than r when NPV is negative. Conceptually,
the selective IRR is obtained as the limit of a tâtonnement process
(in the form of a monotonic ratcheting procedure) that, starting
with a given hurdle rate r , recursively produces a new PIR given
the previous PIR as hurdle rate, thus converging to an element
in I (or ±∞). When computing the selective IRR in this manner,
the NPV is never directly used, so one obtains a complementary
investment criterion (which produces NPV-equivalent decisions).
The selective IRR can be used in an incremental fashion to make
pairwise NPV-consistent decisions between projects and thus to
establish a preference order over a project portfolio.

In addition to resolving the long-standing divide between IRR
and NPV, the selective IRR, which can be viewed as a piecewise
constant function of r , provides an inbuilt robustness with respect
to uncertainty in the hurdle rate. If a small random perturbation
is added to the hurdle rate, then the selective IRR will most
likely remain exact and deterministic, whereas the NPV generally
becomes random. In addition, the use of the selective IRR as
investment criterion fits the empirical observation that firms
tend to choose hurdle rates which exceed their true costs of
capital (Poterba and Summers, 1995). Indeed, firms can exaggerate
their aspiration levels without effectively changing the selective
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IRR.2 Doing this accounts (at least qualitatively) for some of the
option value embedded in an investment opportunity: if the
exaggeration of the hurdle rate triggers a jump in the selective IRR
and thus a change in the investment decision, then, so the heuristic
goes, the investment is no longer attractive because the net present
value at the hurdle rate is not sufficiently positive to justify giving
up the option of doing something else, such as simply delaying the
project.

1.1. Literature

The notion that obtaining a cash flow in the future is worth
less than obtaining it in the present can be traced back to
discounting tables in the sixteenth century (Biondi, 2006). Gioja
(1817, p. 316) provides the classic form of the compound interest
formula, determining the present value of a future cash flow by
discounting it with an interest rate; he also provides the classic
formula for the present value of an annuity (ibid., p. 319). The
modern prominence of the NPV criterion as a basis for investment
decisions is due to Fisher (1930). The NPV rule suffers from the
drawback that by representing the net dollar value of a project
the magnitude of this value cannot be informative about the rate
of return, i.e., the amount gained for every invested dollar, which
provides comparability with investments in capital markets. Other
shortcomings of the NPV rule stem from its failure to include the
value of various options embedded in a project (Ross, 1995) or from
encouraging misrepresentation in the presence of asymmetric
information in an organization (Berkovitch and Israel, 2004).3

The IRR, on the other hand, is implicit in the work of Böhm-
Bawerk (1889) who postulated an investment rule so as to max-
imize the net cash flow for each invested dollar. In its calculation
‘‘funds are assumed to earn, not themarket rate of interest, but the
rate of profit internal to the firm’’ (Scitovsky, 1971, p. 214). Keynes
(1936) terms the IRR therefore the marginal efficiency of capital.4
Lorie and Savage (1955) point out that the rate-of-return method
is ‘‘ambiguous or anomalous’’ (p. 237) in the case where the NPV
as a function of the discount rate r has multiple roots, so the IRR
(as the discount rate for which NPV vanishes) is not uniquely de-
termined. One well-known attempt to modify or decompose the
cash-flow stream so as to guarantee a unique rate of return, was
introduced byWright (1959), Flemming andWright (1971), and in-
dependently by Arrow and Levhari (1969), all ofwhom require that
there be ‘‘costless extricability’’ or in other words, that the project
can be discontinued at any point in time, in which case the IRR is
unique at the NPV-maximizing time horizon. But this IRR, although
unique, provides only minimal information about the return of the
original project and is generally not consistent with the NPV crite-
rion (e.g., because it necessarily neglects any large capital expendi-
tures at the end of a project). Hildreth (1946) and Dorfman (1981)
point out that, under the additional assumption that projects are
repeated indefinitely, selecting onewith the largest real part of the
IRR would maximize overall growth, the exact growth path being

2 Magni (2009) adds that the use of hurdle rates effectively deals with the
bounded rationality of investors vis-à-vis the complexities of their investment
decisions.
3 For example, an option often embedded in an investment project is given by

the ability to delay it, which invalidates the standard NPV criterion (invest when
NPV is positive) because the opportunity cost of giving up the option by taking the
investment decision is not considered (McDonald and Siegel, 1986; Ingersoll and
Ross, 1992). In an organization, managers may try to hide high NPV projects if they
entail less fixed capital than a projectwith lower (but still positive) NPV (Berkovitch
and Israel, 2004).
4 Themarginal efficiency of capital is a special case of the ‘‘incremental IRR’’, that

is the IRR of the difference of two cash-flow streams, also termed ‘‘rate of return over
cost’’ by Fisher, when one of those cash-flow streams vanishes (Alchian, 1955).
determined by all possible complex-valued IRR-values.5 This in-
sight is achieved by modifying both the objective and the project
(from finite-horizon to infinite-horizon), and therefore no signifi-
cant connection to the NPV criterion can be expected.

The selective IRR in this paper is constructed using an idea
by Teichroew et al. (1965a,b) whose project investment rate is
obtained by keeping track of the cash-on-hand (termed project
balance) over time, until the end of the project horizon is reached.
When compounding the project balance forward, the investor uses
an external rate (usually the current hurdle rate) or an internal
rate, depending on whether the current project balance is positive
or negative, respectively. The project investment rate corresponds
to the unique internal rate that renders the final project balance
zero and thus presents the maximum load on negative project
balances that the project can bear without turning into a net loss.
The advantage of the project investment rate over the IRR is that
it is unique and consistent with the NPV criterion. Its disadvantage
is that it is different from any IRR and therefore does not inherit
the desirable conceptual interpretation as marginal efficiency
of capital, which is widely taught to practitioners of corporate
finance (see, e.g., Brealey andMyers, 1991) and enjoys widespread
popularity in practice (Schall et al., 1978; Stanley and Block,
1984; Graham and Harvey, 2001). More seriously, the project
investment rate leads to a mixing inconsistency in the sense that
the convex combination of two positive-NPV projects with the
same PIRs will generally have a larger PIR (see Proposition 2).
Thus, if the NPVs of the two projects are the same, then two
different owners could achieve a Pareto-improvement through
cross-holdings. Our framework sidesteps this issue by requiring
PIRs to be ‘‘in equilibrium’’, in the sense that the PIR remains
unchanged when conditioning it on itself as the external rate; this
in turn pinpoints (for this external hurdle rate) a unique ‘‘selective
IRR’’ in the (extended) set of all possible IRRs (including ±∞).

More recently, two ‘‘product approaches’’ have been proposed,
based on a product representation of the net present value V (x, r)
of the cash-flow stream x at a given external rate r in the form
V (x, r) = α · β , where α = k − r is an excess return (of some
internal rate k relative to r) and β = V (c, r) is the net present
value of an associated investment stream c at the rate r . Given a
nonzero excess return α of any potential IRR-value k (relative to
r), Hazen (2003) shows how to determine an investment stream c
such that the product representation holds. Conversely, given any
investment stream of nonzero NPV β , Magni (2010) shows how to
find an excess return α such that the product representation holds.
Both product approaches conclude that the NPV is positive if and
only if α and β have the same sign. More specifically, they proceed
as follows: in order to compute the sign of V (x, r) = α · β , one of
the factors (say, β ≠ 0) is chosen in an essentially arbitrary man-
ner (except that it be nonzero), which then implies the other factor
(say, α = V (x, r)/β); the latter amounts to computing the NPV of
x directly. Furthermore, due to the arbitrary nature of the choice
of one factor, no additional information can be obtained that is
intrinsic to the evaluation of the investment project. Still, the prod-
uct approaches remain useful for the economic interpretation, e.g.,
when fixing one factor can be motivated by additional outside in-
formation.6 Details about the product approaches in a continuous-
time setting are provided in the Appendix, which also generalizes

5 Pierru (2010) provides a (limited) interpretation of complex-valued solutions
for the IRR in terms of returns of a two-asset portfolio; Osborne (2010) links the
complex-valued solutions directly to the computation of a normalized NPV.
6 Magni (2010) introduces an ‘‘average IRR’’ (AIRR), k̄, such that k̄ = r+V (x, r)/β

where β = V (c, r) ≠ 0 is the net present value of a given investment stream;
see Magni (2013) for a detailed comparison with the standard IRR. The flexibility
in computing an excess return that responds to some observed investment stream
(of interim project values) may be useful in certain applications such as real-estate
projectswhere estimates of those interim values are available (Altshuler andMagni,
2012).
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Hazen’s (2003) result to any internal rate k ≠ r (as opposed to k
being limited to potential IRR-values), which makes it clear that
any excess return α ≠ 0 can be freely chosen together with a suit-
able investment stream that enables the product representation.
The selective IRR introduced here provides intrinsic information
about the return of the project. In particular, for any external rate
r there is a unique selective IRR i(r). The corresponding excess re-
turn α = i(r)− r is such that α · V (x, r) ≥ 0 always (with a strict
inequality if and only if V (x, r) > 0). Hence, the selective IRR i(r)
is an NPV-consistent return criterion (see Appendix), in the sense
that the signs of the associated excess return i(r)− r and of V (x, r)
are identical.

1.2. Outline

Section 2 introduces notation and basic concepts. Section 3
highlights the drawbacks of available return criteria for investment
decisions, before Section 4 introduces the selective IRR and
examines its properties. Section 5 concludes.

2. Preliminaries

Let T > 0be a fixed timehorizon. Consider an investment project
consisting of a deterministic cash-flow stream x(t), which can also
be represented by the (right-continuous) cumulative cash flow

X(t) =

 t

0
x(s) ds,

for all t ∈ [0, T ]. This setup enables a uniform treatment of
discrete-time and continuous-time settings.7

Example 1 (Discrete Cash-Flow Stream). For positive integer T , a
cash-flow stream with concentrated payments xt at the discrete
times t ∈ {0, 1, . . . , T } can be represented by the vector x =

(x0, . . . , xT ), where x0 = X(0) and xt = X(t) − X(t − 1) for
t ∈ {1, 2, . . . , T }.8 A discrete-time cash-flow stream is therefore
fully specified by its vector of cash flows; this is used in the rest of
the paper.

Given an external rate r , representing a cost of capital or a hurdle
rate,9 the present value of the cash-flow stream x is

V (x, r) =

 T

0
exp (−rt) dX(t). (1)

Analogous to Teichroew et al. (1965a,b) let the project balance
y(t, k, r), t ∈ [0, T ], be the cumulative cash holdings under the
cash-flow stream x(t), provided that (i) y(0−, k, r) = 0 and
(ii) compounding takes place at the external rate r for positive
holdings and at the internal rate k for negative holdings. More pre-
cisely,

y(t, k, r) =

 t

0
(f (y(s, k, r), k, r)+ x(s)) ds, ∀ t ∈ [0, T ], (2)

where

f (y, k, r) =


ky, if y < 0,
ry, otherwise.

7 The cumulative cash flow X is assumed to be a signed measure.
8 In the general continuous-time framework, the discrete cash-flow stream

corresponds to x(t) = x · ∆T (t), where ∆T (t) ≡ (δ(t), δ(t − 1), . . . , δ(t − T ))
has values of the same dimension, and δ(·) denotes the Dirac distribution (Lang,
1993, p. 298); it can be interpreted as a probability density with all its unit mass
concentrated at the origin.
9 Poterba and Summers (1995) observe that, to evaluate investment projects,

firms frequently use hurdle rates which are quite different from their actual costs
of capital.
If the cash-flow stream x is absolutely continuous, the integral
equation (2) can be equivalently written as an initial-value prob-
lem,
ẏ(t, k, r) = f (y(t, k, r), k, r)+ x(t), ∀ t ∈ [0, T ],

y(0−, k, r) = 0, (3)

and the corresponding project balance y(·, k, r) is continuous and
differentiable almost everywhere. The project balance represents
the net compounded amount obtained from the project. When the
project balance is negative, it indicates a net investment at that
point. When the project balance is positive, it can be reinvested
at the external rate.

Remark 1 (Continuous vs. Discrete Discounting). For discrete cash-
flow streams, the discount factor e−rt is replaced by the discrete-
time discount factor 1/(1 + r̄)t , where r̄ = er − 1 > −1 is the
discrete-time discount rate and r ∈ R is the unique corresponding
continuous-time discount rate (with r = ln(1 + r̄)).10 The present
value of the discrete cash-flow stream x, represented by the cash-
flow vector x = (x0, x1, . . . , xT ), is therefore

V (x, r) =

T
t=0

x0
(1 + r̄)t

≡ V [x, r̄]. (1′)

Let y = (y0, y1, . . . , yT ) denote the vector of the discrete-time
project balance. Then

yt = f (yt−1, 1 + k̄, 1 + r̄)+ xt , t ∈ {1, 2, . . . , T },

y0 = x0.
(2′)

All of the results in this paper apply directly to discrete cash-flow
streams if one considers discrete time instances t ∈ {0, 1, . . . , T }

and y(t, k, r) = yt as defined in Eq. (2′). To connect to the extant
literature and practical applications, discrete cash-flow streams
are often used in our examples.

Remark 2. Any measurable project balance z(·) = y(·, k, r) can
be generated by some cash-flow stream. Indeed, for a given z and
(k, r) one obtains, by virtue of Eq. (2), the cumulative cash-flow
measure X(t) ≡ z(t) −

 t
0 f (z(s), k, r) ds. If z(·) is differentiable,

then x(t) ≡ ż(t) − f (z(t), k, r) for all t ∈ [0, T ] is the
corresponding cash-flow stream.

A change in the external or internal rate has a one-sided effect
on the project balance.

Lemma 1. At any time t ∈ [0, T ], the project balance y(t, k, r) is
nonincreasing in k and nondecreasing in r.

Proof. Since f is nonincreasing in k and nondecreasing in r , the
monotonicity properties of y follow directly from Eq. (2) for any
fixed t ∈ [0, T ]. �

Increasing the value of the external rate r never decreases the
project balance, whereas increasing the value of the internal rate k
never increases the project balance. This countervailingmonotonic
behavior is useful in evaluating a given cash-flow stream x based
on a fixed benchmark for either rate. For example, given an
exogenously fixed external rate r = ρ (cost of capital, in terms of
opportunity cost for a positive project balance) one can compare
it with the smallest upper bound (supremum) ϕ(ρ) of all internal
rates k for which y(T , k, ρ) ≥ 0. Conversely, given an exogenously

10 The only structural difference between continuous-time and discrete-time
discount rates is that the latter are restricted to be greater than −1 whereas the
former can take on any real values.
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Fig. 1. Relation between external rate, PIR, project balance, and present value.

fixed benchmark for the internal rate k = κ (cost of capital, in
terms of borrowing funds to finance a negative project balance)
one can compare κ to the largest lower bound (infimum) ψ(κ) of
all external rates r for which y(T , κ, r) ≥ 0. See Remark 11 for
further discussion of the two evaluation alternatives. The bounds
ϕ(·) and ψ(·) are now introduced for all possible benchmarks.

The project investment rate (PIR) of the cash-flow stream x on
[0, T ] is defined as11

ϕ(r) = sup

k̂ ∈ R : y(T , k̂, r) ≥ 0


, (4)

using the convention that sup ∅ = −∞. Whenever ϕ(r) is finite,
necessarily

y(T , ϕ(r), r) = 0, (5)

a relation which can be used to determine the PIR inmost interest-
ing cases (see Fig. 1). The PIR is then the (maximum) internal rate
which renders the project balance zero at the end of the horizon.
At a finite ϕ(r), the project is penalized for debt in a maximal way,
such that at the end of the horizon it is as if the project had never
taken place: there is no balance left to carry forward. From a for-
mal viewpoint, one can define for any given internal rate k a project
financing rate (PFR) ψ(k) in a dual manner,

ψ(k) = inf

r̂ ∈ R : y(T , k, r̂) ≥ 0


, (6)

where one sets inf ∅ = +∞. The PFR is theminimumexternal rate
that, for a given internal rate,would guarantee the final project bal-
ance to be nonnegative. It is therefore the largest lower bound on
the rate at which net gains of the project can be reinvestedwithout
the project turning into a loss at the end of its horizon. If ψ(k) is
finite, then necessarily

y(T , k, ψ(k)) = 0, (7)

so, comparing with Eq. (5), a finite PFR is in the preimage of any
finite PIR and vice-versa.12 By the properties of the supremum and
infimum of a set, the PIR exists and is unique as an element of
R̄.13 Neither PIR nor PFR has to be finite; the two functions ϕ(·)
and ψ(·) amount to alternative measures with the same informa-
tional content.Which one of them is used depends onwhether one
considers the internal or external rate as independent benchmark
variable, which amounts to either an investment or financing view-
point, respectively. The modal case is to consider an investment

11 For notational convenience, the dependence on the cash-flow stream x is
dropped here and in similar definitions below. If important for the context (such
as in Lemma 3), notation of the form ϕx(r) emphasizes the dependence on x.
12 That is, ψ(ϕ(r)) ∈ ϕ−1(ϕ(r)) and ϕ(ψ(k)) ∈ ψ−1(ψ(k)) (see also the implicit
function theorem, Rudin, 1976, pp. 224–225); neither ϕ(·) norψ(·)must be strictly
monotonic, and if they are not, each being single-valued they cannot describe the
same curve in (k, r)-space.
13 For details on the (affine) extension of the real numbers, R̄ = [−∞,+∞], see,
e.g., Aubin (1977, Section 1.3). In the discrete case (see Remark 1), the extended set
of admissible discrete returns is [−1,∞] = exp(R̄)− 1.
setting with PIR ϕ(r) for given external rates r , which is therefore
also the focus of most our discussion; yet, themain results are pre-
sented for both equivalent settings; see also Remark 11 and Exam-
ple 16 in Section 4 for further discussion.

Example 2. If x(t) ≡ 0, then ϕ(r) ≡ ∞ and ψ(k) ≡ −∞. To
obtain these PIR and PFR it is enough that x(t) be nonnegative on
[0, T ].

Corresponding to the monotonicity of the project balance in
(k, r) by Lemma 1, the PIR and PFRmust themselves bemonotonic.

Lemma 2. The PIR ϕ(·) and the PFR ψ(·) are nondecreasing
functions.

Proof. Fix two external rates, r̂ and r , such that r̂ > r . Further-
more, let

S =


k̂ ∈ R : y(T , k̂, r) ≥ 0


and

Ŝ =


k̂ ∈ R : y(T , k̂, r̂) ≥ 0


.

By Lemma 1, y(T , k, r̂) ≥ y(T , k, r) for any given k and T , which
implies (using the same lemma) that S ⊆ Ŝ. Thus, by Eq. (4),
ϕ(r̂) = sup Ŝ ≥ sup S = ϕ(r), which implies that the PIR is a
nondecreasing function. The proof for the PFR proceeds in an anal-
ogous manner and is therefore omitted. �

The monotonicity per se already implies a certain regularity, in
thatϕ(·) andψ(·) canhave atmost countablymanydiscontinuities
(Rudin, 1976, pp. 91/100).

Remark 3. A (pure) net investment is such that

y(t, k, r) =

 t

0
ek(t−s)x(s) ds ≤ 0,

for all t ∈ [0, T ]. In that case, the PIR k = ϕ(r) is independent of r
and can be determined uniquely by solving

V (x, k) =

 T

0
e−ksx(s) ds = 0,

provided that the situation is nontrivial such that X ≠ 0. Similarly,
a (pure) net financing is such that y(t, k, r) ≥ 0 for all t ∈ [0, T ],
and consequently V (x, r) = 0 yields a unique and constant PFR
r = ψ(k), as long as X ≠ 0.

Example 3. Consider two discrete cash-flow streams by Dorf-
man (1981, p. 1012), represented by the cash-flow vectors x =

(−1000, 1100, 0) and x̂ = (−1000, 0, 1166). Both are net invest-
ments; their discrete PIRs are 10% and approximately 8%, respec-
tively, independent of the external rate. On the other hand, the
discrete PFR for any of these projects is −1 if the internal rate is
less or equal than its PIR and +∞ for k̄ ≥ 5.25.14

Example 4. The well-known discrete ‘‘pump project’’ (Lorie and
Savage, 1955, p. 237; Hirshleifer, 1958, p. 349; Teichroew et al.,
1965b, p. 160) has a cash-flow vector of the form x = (−16, 100,
−100). It is neither a net-investment nor a net-financing project.

14 The discrete PIR is defined asϕ[r̄] = exp (ϕ(ln(1 + r̄)))−1 for anydiscrete-time
discount rate r̄ > −1, where r̄ = er − 1 for any (continuous-time) discount rate
r ∈ R (see Remark 1). Similarly, the discrete PFR is ψ[k̄] = exp


ψ(ln(1 + k̄))


− 1

for all k̄ > −1. Hence, a PIR of ϕ(r) = −∞ (resp., PFR ofψ(k) = −∞) corresponds
to a discrete PIR of ϕ[r̄] = −1 (resp., a discrete PFR of ψ[k̄] = −1).
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As long as the PIR and the PFR are finite, they can be obtained from
Eq. (2′) in conjunctionwith (5) or (7), respectively, that is by solving

y0 = −16, y1 = −16(1 + k̄)+ 100,
y2 = f (y1, 1 + k̄, 1 + r̄)− 100 = 0,

whence ϕ[r̄] = (5.25 r̄ − 1)/(1 + r̄) for r̄ > −1; or equivalently:
ψ[k̄] = (1 + k̄)/(5.25 − k̄) for −1 < k̄ < 5.25 and ψ[k̄] = +∞

otherwise.

3. Drawbacks of extant return criteria

3.1. Internal rate of return

The classical definition of internal rate of return (IRR) (or
marginal efficiency of capital) of a cash-flow stream x is as an
internal rate i such that V (x, i) = 0. Because this implicit definition
guarantees neither the uniqueness nor the existence of an IRR,
consider the set

I(x) = {r ∈ R : V (x, r) = 0} (8)

of all possible such rates.15

Example 5. For cash-flow streams in Example 2 it is I(x) = R
(when x = 0) or I(x) = ∅ (when x > 0). For the cash-flow stream
in Example 4 it is I(x) = {1/4, 4}.

While the interpretation of a unique IRR as return is useful and
widely accepted for assessing the marginal efficiency of an invest-
ment, even then it is not immediately clear why an investment
criterion based on the comparison of IRRs should produce invest-
ment decisions that are consistent with the NPV criterion; see also
Lemma 3 for a PIR-based approach to project selection.

Example 6. The IRRs for the discrete cash-flow streams in Exam-
ple 3 are 10% for x and (about) 8% for x̂. On the other hand, at
r̄ = 5% one obtains V [x, r̄] < V [x̂, r̄], whereas at r̄ = 10% it is
V [x, r̄] > V [x̂, r̄].

The preceding example illustrates that to be compatible with
NPV, any rate-of-return investment criterion (in addition to being
uniquely determined) should depend on a return benchmark, e.g.,
the external rate r (see also Examples 7 and 12). We ignore
all possible other disadvantages of the standard IRR (see, e.g.,
Magni, 2013), and focus attention on constructing a rate-of-return
investment criterion, which produces NPV-consistent decisions
and selects, for any given return benchmark, a unique value of the
IRR whenever the criterion has a finite value.

3.2. Project investment rate

Comparing the PIR ϕ(r) to the external rate r provides a sharp
investment criterion, equivalent to the rule that the cash-flow
stream x is desirable at a given external rate r if and only if
V (x, r) ≥ 0.

Proposition 1. For any external rate r ∈ R, V (x, r) ≥ 0 if and only
if ϕ(r) ≥ r. In addition, V (x, r) = 0 if and only if ϕ(r) = r.

15 For a discrete cash-flow stream x with cash-flow vector x the set of discrete
IRRs is given by I[x] = {r̄ > −1 : V [x, r̄] = 0} (= exp(I(x))− 1), completely
analogous to earlier definitions of equivalent discrete-time concepts (see Remark 1
and footnote 14).
Proof. Fix an external rate r . Note first that by setting k = r , using
the Cauchy formula (see, e.g., Weber, 2011, Chapter 2), it is

y(t, r, r) =

 t

0
(ry(s, r)+ x(s)) ds =

 t

0
er(t−s)x(s) ds,

which implies

y(T , r, r) = erTV (x, r). (9)

Assume now that ϕ(r) is finite. Thus, if V (x, r) ≥ 0, then by Eqs.
(5) and (9), y(T , r, r) ≥ 0 = y(T , ϕ(r), r) and therefore, using
Lemmas 1 and 2, ϕ(r) ≥ r . On the other hand, if ϕ(r) ≥ r , then
by Eq. (5) and Lemma 1, y(T , ϕ(r), r) = 0 ≤ y(T , r, r). Hence,
by Eq. (9) the present value V (x, r) ≥ 0. If ϕ(r) = ∞, then
y(T , k̂, r) ≥ 0 for any k̂, so (setting k̂ = r) Eq. (9) again implies
the nonnegativity of V (x, r). Last, since y(T , r, r) = erTV (x, r), by
Eqs. (4)–(5): V (x, r) = 0 is equivalent to ϕ(r) = r , concluding the
proof. �

Remark 4. One can formulate Proposition 1 equivalently in terms
of the PFR, namely for any internal rate k ∈ R: V (x, k) ≥ 0 if and
only if ψ(k) ≤ k. We focus attention on PIR as an investment crite-
rion, as all results involving the PIR have an equivalent formulation
in terms of the PFR.

Remark 5. Proposition 1 (in conjunction with Remark 4) can be
compactly stated as follows: (ϕ(r)− r)V (x, r) > 0 for all r ∉ I(x)
(resp., (ψ(k) − k)V (x, k) < 0 for all k ∉ I(x)). The result implies
in particular that V (x, r) > 0 ⇔ ϕ(r) > r (resp., V (x, k) ⇔

ψ(k) < k); see also Remark 11.

The decision between two mutually exclusive investment
projects, x and x̂, needs to be taken based on the return ϕx̂−x
(incremental PIR) of the difference of the two corresponding cash-
flow streams.16 The idea is to evaluate the profitability of x̂ − x,
corresponding to an upgrade from x to x̂, since x̂ = x + (x̂ − x).

Lemma 3. Let x(t) and x̂(t), for t ∈ [0, T ], be two cash-flow streams,
and let ϕx̂−x(r) denote the return of the differential cash-flow stream,
x̂ − x. Then V (x̂, r) ≥ V (x, r) if and only if the incremental PIR
ϕx̂−x(r) ≥ r.
Proof. The claim follows immediately from the fact that V (x̂, r) ≥

V (x, r) if and only if V (x̂ − x, r) ≥ 0. �

Example 7 (Incremental PIR). The (discrete) PIR of the difference
of the discrete cash-flow streams in Example 3 is ϕx̂−x[r̄] ≡

(1166/1100)−1 = 6%, so x̂ is preferable as investment (consistent
with the NPV criterion) if and only if the incremental PIR of 6%
exceeds the external rate r̄ .17

The PIR always exists, is unique, and depends on the external
rate. Most importantly, it is compatible with the NPV criterion
for investment decisions. Yet it suffers from the drawback that it
endorses the mixing of profitable (i.e., positive-NPV) projects and
tends to reject the mixing of unprofitable projects. This is clarified
by the following result.

16 Without loss of generality one can restrict attention to the pairwise comparison
of mutually exclusive cash-flow streams. Arbitrary dependencies between cash-
flow streams can be accommodated by defining each possible choice and resulting
cash-flow stream as an ‘‘alternative’’ that, by construction, is mutually exclusive to
any other such alternative.
17 It is important that x and x̂ be compared over the same time horizon T . Alluding
to Hildreth (1946), Dorfman (1981) pointed out that this may not be clear a priori.
For example, for the cash-flow vector x = (−1000, 1100, 0) it might be possible to
reinvest the project balance at t = 1 at the same return k̄ = 10%, that would result
in the cash-flow vector x′

= (−1000, 0, 1210)which is strictly greater than x̂, so by
Example 9 the incremental selective IRR becomes +∞ (meaning that x′ is strictly
better than x̂), despite the fact that the selective IRR corresponding to x′ remains
the same as the selective IRR corresponding to x.
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Fig. 2. Concavity of the system function f (·, k, r) for k ≥ r .

Proposition 2. Let x(t) and x̂(t), for t ∈ [0, T ], be two cash-flow
streams with identical PIR ϕ(r) at a given external rate r. If ϕλ(r), for
λ ∈ [0, 1], denotes the PIR of the cash-flow stream λx + (1 − λ)x̂,
then (ϕ(r)− r) (ϕλ(r)− ϕ(r)) ≥ 0.

Proof. Let y(t, k, r) (resp., ŷ(t, k, r)) be the project balance for the
cash-flow stream x(t) (resp., x̂(t)) on [0, T ] with PIR k = ϕ(r) (so
y(T , k, r) = 0), and fix λ ∈ [0, 1]. Both y and ŷ satisfy initial-value
problems of the form (3).18 Similarly, the project balance y of the
cash-flow stream λx + (1 − λ)x̂ on [0, T ] satisfies the initial-value
problem

ẏ = f (y, k, r)+ λx + (1 − λ)x̂, y(0−, k, r) = 0.

On the other hand, setting z = λy + (1 − λ)ŷ by the initial-value
problem (3),

ż = λf (y, k, r)+ (1 − λ)f (ŷ, k, r)+ λx + (1 − λ)x̂,
z(0−, k, r) = 0.

Rewriting the system function f in the form

f (y, k, r) =


min{ky, ry}, if k ≥ r,
max{ky, ry}, otherwise,

it becomes apparent that f (·, k, r) is concave for k ≥ r (see Fig. 2)
and convex for k ≤ r . Hence,

ż ≥ f (z, k, r)+ λx + (1 − λ)x̂, for k ≥ r,

and

ż ≤ f (z, k, r)+ λx + (1 − λ)x̂, for k ≤ r.

By virtue of the identical initial conditions, y(0−, k, r) = z(0−,
k, r) = 0, therefore y exceeds z at least weakly for k ≥ r , and
vice-versa for k ≤ r . That is (k − r)(y − z) ≥ 0, and in particular

(k − r)(y(T , k, r)− z(T , k, r)) ≥ 0.

Hence, Lemma 1 and Eq. (4) together imply that the PIR ofλx+(1−

λ)x̂, denoted by ϕλ(r), is greater than (resp., less than) k = ϕ(r) for
k ≥ r (resp., k ≤ r). �

18 To simplify the presentation, the initial-value problem (3) is used instead of the
integral equation (2); if the cash-flow stream contains atoms (such as in the discrete
case; see Example 1) the former is still valid when interpreted in the context of the
theory of distributions (Schwartz, 1950).
20%
20%
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Fig. 3. Mixing inconsistency of the project investment rate in Example 8.

Proposition 2 states that two profitable cash-flow streams with
the same return appear even more profitable in terms of their
returns if they are mixed. For unprofitable projects the converse
obtains. The following example illustrates this fact.

Example 8 (Mixing Inconsistency). Let r̄ = 10% be a given
(discrete-time) external rate. Consider two discrete cash-flow
streams over the horizon T = 2, described by the cash-flow vec-
tors x = (−1100,−13 200, 17 424) and x̂ = (−14 300, 18 000,
−924), respectively. Their present values both equal 1300 and
their discrete PIRs are both equal to 20%. The convex combination
of these cash flows, described by xλ = λx+(1−λ)x̂, for λ ∈ [0, 1],
leaves the present value unchanged, but its discrete PIR ϕλ[r̄] ex-
ceeds ϕ0[r̄] = ϕ1[r̄] = 20% for λ ∈ (0, 1); see Fig. 3.

A consequence of the last example is that a firm interested in
maximizing the return for its shareholders measured in terms of
PIR might be able to do so by engaging in a leveraged buyout of
a target that is inferior in terms of both return and present value.
To see this, it is enough to slightly decrease the present value and
return of one of the projects in Example 8, which at λ = 0.5
(because of the continuity of all measures in λ) would still yield
a larger PIR than each individual project by itself. The apparent
Pareto-improvement from the mixing of projects is inconsistent
with the notion of an unbiased performance measure.

4. Selective IRR as investment criterion

The idea for a rate-of-return investment criterion that combines
the advantages of IRR (interpretation, historical significance,
widespread use) and PIR (existence, uniqueness, dependence on
external rate) is based on an internal consistency that is achieved
by repeatedly ratcheting up (or down) a given initial external
hurdle rate to a new rate, which then becomes itself the external
rate at which to evaluate a given investment project. To arrive at
the definition of a ‘‘selective IRR’’ as an NPV-consistent investment
criterion, it is useful to first bracket all reasonable rates of return
for a project, given any external rate r .

Let i−(r) = sup{r̂ ∈ (−∞, r] : V (x, r̂) = 0} and i+(r) =

inf{r̂ ∈ [r,∞) : V (x, r̂) = 0}, where as before sup ∅ = −∞ and
inf ∅ = +∞. Now define the selective IRR as

i(r) =


i+(r), if ϕ(r) ≥ r,
i−(r), otherwise. (10)
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From Eq. (8), both i+(r) and i−(r) lie in the extended set of IRRs,

Ī(x) = I(x) ∪ {−∞,+∞}; (11)

moreover, these ‘‘bracket rates’’ bound the PIR. The two additional
elements, −∞ and +∞ (see footnote 13), in the extended set of
IRRs Ī(x) are important to guarantee the existence of the selective
IRR. The extra elements also make perfect sense as illustrated in
the next example.

Example 9. (i) If, as in Example 2, x(t) ≥ 0 for all t ∈ [0, T ], then
i(r) ≡ +∞. (ii) If x(t) < 0 for all t ∈ [0, T ], then i(r) ≡ −∞. (iii) If
x(t) = t − 1, for all t ∈ [0, T ], and T = 2, then

i(r) =


+∞, if r < 0,
0, if r = 0,
−∞, if r > 0.

An unbounded selective IRR of i(r) = ∞ for a given r is by
construction equivalent to i+(r) = ∞ (by Eq. (10)) and V (x, r) > 0
(by Proposition 1). The latter means that increasing the external
rate beyond r cannot decrease the present value of the project to
zero, i.e., for any r̂ ≥ r it is V (x, r̂) > 0. Similarly, if i(r) = −∞,
then V (x, r̂) < 0 for all r̂ ≤ r .

Remark 6 (Discrete Selective IRR). For a discrete cash-flow stream x
with cash-flow vector x (see Remark 1) the extended set of discrete
IRRs is

Ī[x] = I[x] ∪ {−1,∞}, (11′)

where I[x] = {r̄ > −1 : V [x, r̄] = 0} is the set of discrete
IRRs (see footnote 15). With the discrete bracket rates i±[r̄] =

exp (i±(ln(1 + r̄)))− 1 the discrete selective IRR becomes

i[r̄] =


i+[r̄], if ϕ[r̄] ≥ r̄,
i−[r̄], otherwise, (10′)

for all r̄ > −1, where ϕ[r̄] = exp (ϕ(ln(1 + r̄)))−1 is the discrete
PIR of x (see footnote 14).

Lemma 4. For any external rate r ∈ R, it is i−(r) ≤ ϕ(r) ≤ i+(r).

Proof. Begin with the second inequality. By Proposition 1,

{r̂ ∈ [r,∞) : V (x, r̂) = 0} = {r̂ ∈ [r,∞) : ϕ(r̂) = r̂}. (12)

If i+(r) is infinite, there is nothing to show. If i+(r) < ∞, then there
exists a finite number r̂ such that i+(r) = ϕ(r̂) = r̂ ≥ r . Thus, by
Lemma 2, ϕ(r) ≤ ϕ(r̂) = i+(r), which is the second inequality.
The first inequality follows from a symmetric argument. �

The selective IRR, defined in Eq. (10), can be interpreted as
a limit of recursively ratcheted hurdle rates. This construction is
independent of Eq. (10), but it leads to the same result. The key for
establishing convergence is the monotonicity and boundedness of
the resulting sequence of returns.

Proposition 3. For any external rate r ∈ R, it is
ϕ(ϕ(ϕ(· · ·ϕ(r) · · ·))) → i(r).

Proof. We distinguish three cases, based on the sign of V (x, r).
1. If V (x, r) > 0, then by Proposition 1 it is ϕ(r) > r . Consider
now the sequence σ = (rn)∞n=0 with r0 = r and rn+1 = ϕ(rn)
for all n ≥ 0. Then by assumption, r1 ≥ r0. Furthermore, if
rn+1 ≥ rn, then using the monotonicity of ϕ(·) (by Lemma 2),
rn+2 = ϕ(rn+1) ≥ ϕ(rn) = rn+1. Thus by induction, rn+1 ≥ rn for all
n ≥ 0. It is well known (see, e.g., Rudin, 1976, Theorem 3.14) that
the monotonic sequence σ converges if and only if it is bounded.
By definition of i+(·) and Eq. (12), i+(r0) (which is equal to i(r)
because r0 = r; furthermore i+(r) ≥ r) is the largest lower bound
Fig. 4. Computation of the selective IRR.

of the set S(r) = {r̂ ∈ [r,∞) : ϕ(r̂) = r̂}, which must also be an
upper bound for σ , and σ therefore has a limit, r∞ ≤ i+(r). Thus,
necessarily ϕ(r∞) = r∞, since otherwise r∞ could not have been
the limit ofσ . But thismeans r∞ is an element of the set S(r), which
in turn implies that r∞ = inf S(r) = i+(r). 2. If V (x, r) = 0, then
the claim follows trivially because r = ϕ(r) = i+(r) = i−(r).
3. If V (x, r) < 0, then the claim follows using arguments that
are symmetric to the case where V (x, r) > 0. This completes the
proof. �

Fig. 4 illustrates the recursive ratcheting procedure. The last
result implies the fixed-point relation

ϕ(i(r)) = i(r), (13)

because V (x, r̂) = 0 if and only if ϕ(r̂) = r̂; furthermore,
V (x, i(r)) = 0 by definition of i(r). Thus, the selective IRR i(r) is
a fixed point of the PIR map ϕ(·). The fixed point is stable, i.e., can
appear as a limit of a ratcheting procedure that starts elsewhere, if
(i(r) − i)(ϕ(i) − i) > 0 for all i ≠ i(r) in some neighborhood of
i(r).19 Fig. 4 shows the stable fixed points i(r), i(r̂) and the unstable
fixed point where i(·) jumps.

Example 10. Consider again the ‘‘pump project’’ of Example 4. The
solution set of the fixed-point problemϕ[r̄] = r̄ is I[x] = {1/4, 4}.
For r̄ = 1/7 < 1/4, one obtains ϕ[r̄] = −7/32 < r̄ , so by the
recursive ratcheting procedure, i[r̄] = −1. On the other hand, for
r̄ = 1/3 in (1/4, 4], one obtains ϕ[r̄] = 9/16 > r̄ and therefore
i[r̄] = 4. More generally,

i[r̄] =


−1, if r̄ ∈ (−1, 1/4),
1/4, if r̄ = 1/4,
4, if r̄ > 1/4,

for any external rate r̄ > −1.

Remark 7 (Numerical Computation). In practice, finding the selec-
tive IRR i(r) for a given cash-flow stream x at the rate r is simpler
than determining I(x), because instead of determining all roots k
of V (x, k) it merely requires finding the next zero of the NPV in
a known direction of the external rate,20 depending on the sign

19 If ϕ(·) is differentiable, then the fixed point i(r) is stable if ϕ̇(i(r)) < 1; it is
unstable if ϕ̇(i(r)) > 1.
20 One may use the well-known Pegasus method, an efficient variation of the
Newton gradient method, which avoids direct computation of the gradient (Dowell
and Jarratt, 1972).
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of V (x, r), at the given external rate r .21 If V (x, r) > 0 (resp.,
V (x, r) < 0), then i(r) is the closest element in Ī(x) to the right (resp.,
left) of r .

The monotonicity properties of the PIR are inherited by the
selective IRR.

Lemma 5. The selective IRR i(·) is a nondecreasing function.

Proof. Both i−(·) and i+(·) are nondecreasing functions, so i(·)
is by Eq. (10), as composition of nondecreasing functions, also a
nondecreasing function. �

The usefulness of the selective IRR as an investment criterion
rests on the following result, which establishes that the external
rate and the selective IRR necessarily bracket the PIR.

Lemma 6. For any external rate r ∈ R, the PIR ϕ(r) lies between r
and the selective IRR i(r), that is (ϕ(r)− r)(i(r)− ϕ(r)) ≥ 0.

Proof. If ϕ(r) ≥ r , then by the proof of Proposition 3, i(r) =

i+(r) ≥ ϕ(r) ≥ r . Similarly, if ϕ(r) ≤ r , then i(r) = i−(r) ≤

ϕ(r) ≤ r . Combining both conclusions yields the inequality in the
lemma for any given external rate r . �

By virtue of Lemma 6, ϕ(r) = r if and only if i(r) = ϕ(r). In
other words, all the fixed points of ϕ(·) are also fixed points of i(·);
Proposition 1 implies that the NPV must therefore vanish exactly
at those fixed points. This together with the preceding lemma is
enough to establish the selective IRR as equivalent to the NPV
criterion.

Proposition 4. For any external rate r ∈ R, V (x, r) ≥ 0 if and only
if i(r) ≥ r. In addition, V (x, r) = 0 if and only if i(r) = r.

Proof. By Lemma 6, i(r) ≥ r implies that ϕ(r) ≥ r . Conversely, if
ϕ(r) ≥ r , then by the proof of Proposition 3, i(r) = i+(r) ≥ ϕ(r) ≥

r . Hence, (i(r) − r)(ϕ(r) − r) ≥ 0 for all r . Last, by Proposition 1
V (x, r) = 0 is equivalent to ϕ(r) = r , which by Proposition 3
implies that i(r) = r . Conversely, if i(r) = r , then r ∈ I(x) and
thus V (x, r) = 0, completing the proof. �

The selective IRR works as an investment criterion also in the
somewhat pathological case where V (x, r) is nonpositive for all r
and V (x, r) = 0 for some r , shown below.

Example 11 (Hartman and Schafrick, 2004, Example 2). Let x be a
discrete cash-flow stream with cash-flow vector x = (−1, 4,−4).
Then Ī[x] = {−1, 1,∞} and the discrete PIR is ϕ[r̄] = (3r̄ −

1)/(1 + r̄) for all r̄ > −1. The only fixed point of ϕ[·] is 1 (i.e.,
ϕ[1] = 1). The selective IRR becomes

i[r̄] =


−1, if r̄ ∈ (−1, 1),
1, if r̄ ≥ 1.

Hence, i[r̄] < r̄ for all r̄ ∈ (−1,∞) \ {1} and i[1] = 1. By
Proposition 4, it is therefore V [x, 1] = 0 and V [x, r̄] < 0 for
r̄ ∈ (−1,∞) \ {1}.

It is clear that the notion of an ‘‘incremental selective IRR’’,
defined as the selective IRR of the difference of two cash-flow
streams, can be used to decide between two mutually exclusive
investment projects, in analogy to Lemma 3.

21 The implied partition is reminiscent of the method proposed by Hartman and
Schafrick (2004), which splits the graph of V (·, r) horizontally according to the sign
of its first derivative. Yet their method does not yield a unique ‘‘relevant’’ IRR when
r coincides with a local extremum of V , i.e., when ∂V

∂x


(x,r) = 0.
Example 12 (Incremental Selective IRR). Just like the incremental
PIR in Example 7 the selective IRR can be applied ‘‘incrementally’’
to the difference of the discrete cash-flow streams in Example 3.
One obtains ix̂−x[r̄] ≡ 6%. Thus, x̂ is preferred over x if and only if
ix̂−x[r̄] ≥ r̄ , which holds if and only if −1 < r̄ ≤ 6%.

In contrast to the PIR, the selective IRR does not suffer from a
mixing inconsistency when combining different projects with the
same return; see Proposition 2 and Example 8. The fundamental
reason is that the intersection of the sets of IRR values for two
different cash-flow streams x and x̂ contains IRR values of any
linear combination of these cash-flow streams; more specifically,

I(x) ∩ I(x̂) ⊆ I(µx + µ̂x̂), (14)

for any µ, µ̂ in R.

Example 13. The mixing inconsistency in Example 8 does not
appear when evaluating the mixed cash-flow stream using the
selective IRR. Denoting the latter iλ[r̄], it in fact does not depend
on λ ∈ [0, 1], which follows directly from Eq. (14) with (µ, µ̂) =

(λ, 1 − λ).

Remark 8 (Intrinsic External Rate). Analogous to PIR vs. PFR (see
Remark 4), for a given internal rate k the intrinsic external rate j(k)
is defined as22

j(k) =


j+(k), if ψ(k) ≥ k,
j−(k), otherwise, (15)

where j−(k) = sup{k̂ ∈ (−∞, k] : V (x, k̂) = 0} and j+(k) =

inf{k̂ ∈ [k,∞) : V (x, k̂) = 0}, and as before sup ∅ = −∞

and inf ∅ = +∞. It is straightforward to show that the in-
trinsic external rate can be viewed as the product of a ratchet-
ing procedure, so that in analogy to Proposition 3 one obtains
ψ(ψ(ψ(· · ·ψ(k) · · ·))) → j(k). Finally, as in Proposition 4 j(k)
can be used as a decision criterion, where the relevant direction
of the inequality is analogous to the logic in Remark 4. That is,
for any internal rate k ∈ R, V (x, k) ≥ 0 if and only if j(k) ≤ k.
Fig. 5 illustrates the ratcheting procedure, which is the dual equiv-
alent of the process depicted in Fig. 4. Note that j(k) has values in
Ī(x) but that the stability properties of the elements of I(x) are es-
sentially reversed.23 Intuitively, an intrinsic external rate does one
of two things based on a given PFR ψ(k): for a profitable project,
it presents the fully ratcheted-down external rate lowering the
project value towards zero; for an unprofitable project, it is the
fully ratcheted-up external rate raising the project value towards
its break-even point. Remark 11 contrasts the alternative evalua-
tion viewpoints: ‘‘investment’’ (comparing i(r) against a given ex-
ternal rate r) or ‘‘financing’’ (comparing j(k) against a given internal
rate k).

Remark 9. Similar to Remark 5 after Proposition 1, Proposition 4
can be compactly stated as follows: (i(r) − r) V (x, r) > 0 for all
r ∉ I(x) (resp., (k − j(k)) V (x, k) > 0 for all k ∉ I(x)). The

22 In analogy to its dual notion (the selective IRR), the intrinsic external rate could
also be called ‘‘selective external rate of return’’, a terminology we avoid because
the external rate of return r is often thought of as a given external-rate benchmark
rather than an investment criterion. In addition, it turns out that the intrinsic
external rate, whenever finite, selects for a given internal return benchmark k
an element of the possible IRRs of a cash-flow stream, i.e., if |j(k)| < ∞ then
j(k) ∈ I(x). Similarly, the selective IRR could also be referred to as an ‘‘intrinsic
internal rate of return’’.
23 In the differentiable case (with strict monotonicity, see also footnote 19), this
follows from the inverse function theorem (Rudin, 1976, pp. 221/223), since ψ̇(k) ≡

1/ϕ̇(ψ(k)).
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Fig. 5. Computation of the intrinsic external rate.
result implies in particular that V (x, r) > 0 ⇔ i(r) > r (resp.,
V (x, k) ⇔ j(k) < k).

Example 14. The intrinsic external rate for the discrete cash-flow
stream in Example 10 is24

j[k̄] =

1/4, if k̄ ∈ (−1, 4),
4, if k̄ = 4,
∞, if k̄ > 4,

for any internal rate k̄ > −1. Similar to the discussion in Remark 4
after Proposition 1, the investment criterion of Proposition 4 can
be equivalently reformulated as V [x, k̄] ≥ 0 if and only if
j[k̄] ≤ k. Because of the inbuilt ratcheting,25 for any profitable
investment project the internal reference rate must exceed the
intrinsic external rate.

Remark 10 (Scaling Properties). Let x and x̂ be two cash-flow
streams on [0, T ] so that x̂ = µx for some µ ≠ 0, and let y
and ŷ denote the respective project-balance functions. Then the
following scaling (or homogeneity) properties hold: (i) V (x̂, ·) =

µV (x, ·); (ii) I(x̂) = I(x); (iii) If µ > 0, ŷ(t, k, r) ≡ µ y(t, k, r),
ϕx̂(r) ≡ ϕx(r), and ix̂(r) ≡ ix(r); (iv) If µ < 0, ŷ(t, k, r) ≡

µ y(t, r, k), ϕx̂(r) ≡ ϕ−x ≡ ψx(r), and ix̂(r) ≡ i−x(r). The proofs
for these properties are straightforward and therefore omitted.

Properties (i) through (iv) in Remark 10 describe how the
performance measures behave when the investment projects are
scaled (forµ > 0) or when the perspective shifts to a counterparty
(for µ < 0) that views payables as receivables and vice-versa as
shown in the next two examples.

Example 15 (Negative Scaling and IRR Stability). Consider the
discrete cash-flow stream x as in Example 4 and x̂ = −x with
associated cash-flow vector x̂ = (16,−100, 100). Then ŷT = −yT ,
and consequently ϕx̂[r̄] = (1 + r̄)/(5.25 − r̄) which directly
corresponds to ψ[·] for x as computed in Example 4. While the
set of possible IRRs remains the same when scaling the cash-flow
stream by any nonzero factor, the stability properties of the fixed

24 The discrete intrinsic external rate j[·] is obtained (using discrete-time
equivalents j±[·] andψ[·]) using a procedure analogous to Remark 6 for the discrete
version of the selective IRR.
25 The ratcheting process is such that k0 = k and ψ(kn) = kn−1 for n ≥ 1, where
k is the given internal benchmark. The latter determines the limit of the ratcheting
process, j(k).
points of ϕx̂[·] are reversed when the scaling factor is negative,
so

ix̂[r̄] =

1/4, if r̄ < 4,
4, if r̄ = 4,
+∞, if r̄ > 4,

for any external rate r̄ > −1.

Remark 11 (Investment Setting vs. Financing Setting). In an invest-
ment setting, a decision maker evaluates a cash-flow stream x as a
function of the external rate r . That is, she needs to decide whether
to accept x instead of investing available funds at the rate r . By
Proposition 4 the answer to this question is in the affirmative, i.e.,
an investment in x is viable if and only if i(r) ≥ r . In a financing set-
ting on the other hand, the decisionmaker evaluates x as a function
of the internal rate k. That is, sheneeds to decidewhether to finance
x if funds are to be borrowed at a rate k. By Remark 8 the cash-flow
stream x is viable if and only if j(k) ≤ k. If k = r , then the two
alternative settings lead to exactly the same acceptance/rejection
decisions for any cash-flow stream x. The last assumption, namely
that internal and external benchmark rates are the same,might not
hold in all practical settings. The following example serves as an il-
lustration; see also Fig. 6.

Example 16 (Evaluating Cash-Flow Transactions). Consider a cash-
flow transaction between two decision makers, A and B. Assume
that decision maker B is a bank and proposes the cash-flow stream
x to A. Let x be a discrete cash-flow stream with cash-flow vector
x = (100,−110) corresponding to an initial payment of 100 as
loan principal from B to A, followed by a repayment of 110 from
A to B in the next period. If A’s (discrete-time) external hurdle
rate is r̄ = ρ̄A, then A would accept x if and only if ix[ρ̄A] ≥

ρ̄A or, equivalently, if and only if ρ̄A ≥ 10%. This means that
accepting the loan from B is viable for A if and only if the external
rate of return that A can earn from a positive project balance
is at least 10%. From B’s perspective, the transaction consists of
the cash-flow stream x̂ = −x; the sign is reversed because
necessarily x̂ + x = 0 to guarantee balanced budgets at any
point in time. If its internal borrowing rate is set at κ̄B, B can
evaluate the cash-flow vector x̂ = (−100, 110) in a financing
setting. Then the transaction would be acceptable if and only if
jx̂[κ̄B] ≤ κ̄B, or equivalently, κ̄B ≤ 10%. That is, the transaction takes
place if and only if κ̄B ≤ 10% ≤ ρ̄A, in which case it is viable for
both parties. Alternatively, B can adopt an investment perspective
to evaluate x̂, given a lending rate ρ̄B that could be charged to
customers other than A. In that case, B accepts the transaction if
and only if ρ̄B ≤ ix̂[ρ̄B], or equivalently ρ̄B ≤ 10%. Then the
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Fig. 6. Criteria for accepting cash-flow stream x in either investment or financing setting.
transaction takes place if and only if ρ̄B ≤ 10% ≤ ρ̄A. This last point
is important because it illustrates that the acceptability of a cash-
flow transaction depends critically on outside opportunities. For
example, if B is not a bank but a decision maker with identical cost
of capital as A and ρ̄A = ρ̄B = 15%, then A would enthusiastically
accept the transaction, whereas B would prefer to decline it.26 In
general, B’s internal and external cost-of-capital rates may differ,
so κ̄B ≠ ρ̄B, in which case the investment and financing settings
provide different investment criteria which need to be satisfied
simultaneously. Thus, the above transaction would take place if,
for instance, κ̄B = 5%, ρ̄B = 8%, and ρ̄A = 15%.

Remark 12 (Robustness). For a given cash-flow stream x, assume
that the set I(x) of potential IRR-values is finite.27 For any possible
external rate r ∈ R let d(r, x) = {|r − r̂| : r̂ ∈ I(x)} be
the distance of this rate to the closest potential IRR-value. If the
external rate r is uncertain in the sense that it can be considered
as the realization the random variable r̃ which follows some
continuous cumulative distribution function (corresponding to a
probability density without atoms), then Prob(d(r̃, x) > 0) = 1.
Hence, because the selective IRR i(r) can have (finite-size) jumps
at most on I(x), with probability one it will be possible, once the
realization r is known, to find a neighborhood Nε = (r − ε, r + ε)
(e.g., with ε = d(r, x)/2) such that i(r̂) = i(r) for all r̂ ∈ Nε . In
other words, almost surely the selective IRR will be insensitive to
small variations of the external rate.

5. Conclusion

As mentioned in Section 1, the internal rate of return (IRR) is
usedwidely in practice, often because of its direct comparability to
asset returns in financialmarkets. For example, it appears naturally
as ‘‘yield to maturity’’ of a fixed-income security, i.e., the rate of
return of an interest-bearing investment held to its maturity date
at T . The well-known problems with the IRR resulting from its
generic nonexistence or nonuniqueness disappear by using instead
the selective IRR, which always exists and selects, for any external
rate r , a unique element of the extended set Ī(x) of possible IRRs

26 More generally, a decision maker never wants to both invest in x and in −x
unless the NPV (of both cash-flow streams) vanishes at the relevant cost of capital.
27 This holds for any discrete cash-flow stream over a finite time horizon. More
generally, it is enough for the robustness argument here if I(x) is countable.
(including ±∞) for a given cash-flow stream x. The construction
of the selective IRR is based on the project investment rate ϕ(r)
and therefore inherits its NPV-consistence, in the sense that the
difference between i(r) (resp., ϕ(r)) and r has the same sign as the
NPV of the project.

The selective IRR does not suffer from the drawbacks that
plague other rate-of-return criteria such as the mixing inconsis-
tency for the PIR uncovered in Section 3.2. Its computation is sim-
pler than determining the set I(x) (see Remark 7). It is also ar-
guably more robust than NPV in the following sense (with details
in Remark 12): pick a random nominal rate r0; with probability 1
there exists ε > 0 such that i(r) = i(r0) for all r ∈ (r0 − ε, r0 + ε).
That is, except for a measure-zero set of external rates, the selec-
tive IRR will be exact even in the presence of some uncertainty. On
the other hand, given a noisy external rate the NPV of a project is
generically inexact (with probability 1), and, because of the nonlin-
earity of V (x, r) in r , it cannot simply be replaced by its expected
value. The selective IRR can be used tomeasure the sensitivity of an
investment decision with respect to changes in the external rate,
just like the traditional IRR (Berk and DeMarzo, 2007, p. 150).

It is useful to note that the selective IRR i(r) is compatible with
the standard Keynesian notion of marginal efficiency of capital
(Dorfman, 1981) and that it does depend on the external rate of
return. The latter can be viewed as a public signal that allows the
coordination of firm and outside capital, in order to determine an
appropriate internal rate of return. More specifically, it is possible
to interpret the selective IRR as equilibrium of an alternating-
offer bargaining game (without delay between rounds) between
two firms and a venture capitalist. The latter operates on a capital
market with risk-free rate of return r0 = r . The two firms
have identical investment projects, here assumed profitable and
described by the cash-flow stream x on [0, T ]. They Bertrand-
compete on the rent they are willing to provide to the investor on
borrowed capital.

As a result the firms offer the project investment rate rn+1 =

ϕ(rn), based on the last offer rn of the venture capitalist who in turn
responds by asking for that maximal rate, after which the firms
revise their offers, and so forth, until they arrive at the selective
IRR i(r) = limn→∞ rn as the limit of this ratcheting procedure,
further described in the proof of Proposition 3. The initial rate r
therefore serves as a coordination device for the selection of a
Nash equilibrium in a set of equilibriawhich (via bijection) directly
corresponds to the extended set Ī(x) of possible selective IRRs,
defined after Eq. (10). In this context, the selective IRR behaves
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in analogy to an (ideal) equilibrium refinement which always
produces a unique value.28

The well-known drawbacks of the NPV rule (Ross, 1995;
footnote 17) apply also to the (by Proposition 4 equivalent)
selective-IRR criterion. However, in the absence of interest-rate
uncertainty those drawbacks can be eliminated by solving all
stochastic optimization problems (e.g., related to the optimal
stopping problem to determine the timing of the investment) and
then applying theNPV criterion or the selective-IRR criterion to the
resulting expected cash-flow stream. The two investment criteria
should be viewed as complementary, since cash-flow streams of
the same NPV can have dramatically different returns.29 When
it comes to choosing between the two criteria, scalability of an
investment opportunity is the key. If the investment is not scalable,
then for a given external rate the NPV provides a notion of its
present value, while the selective IRR fails to capture the size of
the gain. If it is, then the selective IRR provides a notion of the
achievable return on capital invested, not reflected in the NPV.
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Appendix. NPV-consistency

Let xbe a cash-flow streamon [0, T ]. As alluded to in Section 1.1,
a return criterion θ is termed NPV-consistent if, for a given return
benchmark (cost of capital, hurdle rate) it induces an excess return
of the same sign as the net present value of x at the return
benchmark. If the given return benchmark is the external (resp.
internal) rate r (resp. k), the return criterion θ(r) (resp. θ̂ (k)) is
necessarily an internal (resp. external) rate. The excess return is
here defined as the difference between the internal return and the
external return.

Thus, if θ(r) is an internal return criterion for any given external
return r . Then the excess return is θ(r) − r , and the criterion θ is
NPV-consistent if and only if

(θ(r)− r) V (x, r) > 0 ∀ r ∉ I(x). (16)

If, on the other hand, θ̂ (k) is an external return criterion for any
given internal return k, then the excess return is k − θ̂ (k), and the
criterion θ̂ is NPV-consistent if and only if

(k − θ̂ (k)) V (x, k) > 0 ∀ k ∉ I(x). (17)

The definition of NPV-consistency in Eq. (16) guarantees that
investment decisions based on a mere comparison of the return
criterion with the benchmark rate yields the same results as the
classical NPV-rule. By virtue of Remark 5 (after Proposition 1) and
Remark 9 (after Proposition 4) the project investment rate (PIR)

28 Kreps (1990, Chapter 5) points to equilibrium multiplicity as one of the major
drawbacks of game theory and consequently to equilibrium refinement as a
potential savior. However, the issueswith IRR as investment criterion are evenmore
serious than equilibriummultiplicity is for games, since I(x) not only might not be
a singleton, but might even be empty. By contrast the selective IRR always exists
and is unique as an element of Ī(x) = I(x) ∪ {−∞,∞}.
29 For example, given a fixed external rate r̄ > −1 the discrete cash-flow stream
x(t) on [0, 1], represented by the vector x = (− 1+r̄

k̄−r̄
, 1+k̄+r̄+k̄r̄

k̄−r̄
), satisfies the

‘‘isoperimetric constraint’’ of having the constant value V [x, r̄] = 1 while at the
same time the selective IRR is i[r̄] = k̄, for any k̄ > r̄ > −1.
ϕ(·) and the selective IRR i(·) are NPV-consistent external return
criteria, in the sense that Eq. (16) holds for θ(·) ∈ {ϕ(·), i(·)}.
Similarly, by Remarks 5 and 9 the project financing rate (PFR)
ψ(·) and the intrinsic external rate j(·) are NPV-consistent internal
return criteria, i.e., Eq. (17) is satisfied for θ̂ (·) ∈ {ψ(·), j(·)}.30

The product approaches by Hazen (2003) and Magni (2010)
represent the NPV as the product of the excess return α and
the present value of some invested capital, related to the project
balance by Teichroew et al. (1965a,b). Below we formulate these
approaches in continuous time generalizing the first, and then
compare them to PIR and selective IRR, respectively.

A.1. Factorization of NPV with given IRR

Hazen (2003) uses the concept of an investment stream
(Lohmann, 1988), defined relative to a given IRR, to formulate an
NPV-equivalent investment rule. Specifically, Hazen (2003, p. 35)
introduces the notion that a discrete investment stream c with
cash-flow vector c = (c−1, . . . , cT ) yields a (discrete) cash-flow
stream xwith cash-flow vector x = (x0, . . . , xT ) at return k ∈ I[x]
if the following three relations are satisfied,

x0 = kc−δ −
c0 − c−1

δ
, (18)

xt = kct−δ −
ct − ct−δ

δ
, ∀ t ∈ {1, . . . , T − 1}, (19)

xT = kcT−δ −
cT − cT−δ

δ
, (20)

where c−1 = cT = 0 and δ = 1 in Hazen’s paper.31 First, if we
split the time interval [−δ, T ] for δ = T/N in N + 1 intervals,
[−δ + iδ,−δ + (i + 1)δ] for i ∈ {0, . . . ,N}, then Eqs. (18)–(20)
translate to

xt = kct−δ −
ct − ct−δ

δ
,

∀ t ∈ {τ : τ = −δ + iδ, i ∈ {0, . . . ,N + 1}, δ = T/N}, (21)

where c−δ = cT = 0. For N → ∞ (i.e., δ ↓ 0+), Eq. (21) becomes

x(t) = kc(t)− ċ(t), ∀ t ∈ [0, T ], (22)

with the boundary conditions c(0) = 0 and c(T ) = 0. In
our continuous-time setting, one obtains the linear initial-value
problem (IVP),

ċ(t)− kc(t) = −x(t), ∀ t ∈ [0, T ], c(0) = 0, (23)

with an additional endpoint condition c(T ) = 0. The unique
solution of the IVP (23) is obtained via the Cauchy formula (see,
e.g., Weber, 2011, p. 25),

c(t) = −ekt
 t

0
e−ksx(s)ds.

Hence, the investment stream c(t) represents the future value,
at time t ∈ [0, T ], of the ‘‘t-truncated’’ cash-flow stream x|[0,t],
defined at time t as x multiplied with the indicator function 1[0,t],

30 For the selective IRR i(·) and the intrinsic external rate j(·), NPV-consistency
can be interpreted as the (uncompensated) law of demand and the law of supply,
respectively (see, e.g., Mas-Colell et al., 1995, pp. 111/138). This duality is related to
the alternative viewpoints of investing vs. financing in Remark 11 for the evaluation
of the viability of a cash-flow stream.
31 Hazen’s investment stream (c0, . . . , cT−1) omits the zero boundary elements
c−1 and cT . The latter carry no extra information, except that they make it possible
to combine Eqs. (18)–(20) into Eq. (21).
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Fig. 7. Product approach by Hazen (2003).
i.e., the cash-flow stream x is restricted to be nonzero at most on
the interval [0, t].32 The endpoint condition,

c(T ) = −ekT
 T

0
e−ktx(t)dt = −ekTV (x, k) = 0,

amounts to requiring that the present value V (x, k) vanishes, or
equivalently, that

k ∈ I(x),

i.e., k must be an internal rate of return of the cash-flow stream
x. From the above it follows that c yields x at rate k if and only if
k ∈ I(x) and x(t) = ektV (x|[0,t], k) for all t ∈ [0, T ]. This essentially
corresponds to Hazen (2003, Theorem 2), where c(t) is the IRR-
implied outstanding capital (at time t).

Using integration by parts, one finds (taking into account the
boundary conditions c(0) = c(T ) = 0) that33

V (x, r) =

 T

0
e−rtx(t)dt =

 T

0
e−rt (kc(t)− ċ(t)) dt

= kV (c, r)−

 T

0
e−rt ċ(t)dt

= kV (c, r)−


e−rT c(T )− c(0)

−

 T

0
(−r)e−rtc(t)dt


= (k − r)V (c, r). (24)

Hence, if c yields x at rate k, then

V (x, r) = (k − r)V (c, r) (∗)

for any rate r . This corresponds to Hazen (2003, Theorem 1), where
the factor α = k − r is the ‘‘excess return’’ and β = V (c, r) the
‘‘invested capital’’. Thus, the present value of the cash-flow stream
x can be expressed as a product,

V (x, r) = α · β. (∗∗)

The main result (Hazen, 2003, Theorem 4, parts (i) and (ii)) is that
V (x, c) > 0 if and only if α and β have the same definite sign. The
case where β > 0 is called ‘‘net investment’’ and the case where
β < 0 is called ‘‘net borrowing’’.We note that bothα andβ depend
on k and r , and that β also depends on the entire cash-flow stream
x. Fig. 7 provides an overview of the product approach by Hazen
(2003) for reaching a decision about whether to invest in a project
with cash-flow stream x at the given external rate r .

32 The investment stream, as solution to the IVP (23), is closely related to the
project balance by Teichroew et al. (1965a,b), as solution to the IVP (3) in Section 2,
since y(t, r, r) ≡ −c(t).
33 This factorization (in discrete time) was also used by Lohmann (1988, p. 321).
A.2. Factorization of NPV with given investment stream

Stated in continuous time, Magni (2010) allows for the choice
of an absolutely continuous investment stream c(t), t ∈ [0, T ],
of nonzero NPV, and introduces a return-on-investment stream
R = ċ + x and a return function K(t) = R(t)/c(t), which is defined
as long as c(t) ≠ 0. With this, one obtains

V (x, r) = V (R, r)− rV (c, r) = (k̄(c, r)− r)V (c, r), (∗∗∗)

using the ‘‘Chisinimean’’ (Chisini, 1929, p. 108;Magni, 2010, p. 159)

k̄(c, r) =
V (R, r)
V (c, r)

=
V (Kc, r)
V (c, r)

,

provided that V (c, r) ≠ 0 by assumption. The value k̄(c, r)
is referred to as the ‘‘average internal rate of return’’ (AIRR). It
depends on the external rate r and the chosen investment stream
c . In the definition of the AIRR there is the issue that K(t) is not
defined whenever c(t) = 0, which is briefly mentioned by Magni
(2010, Remark 1). Yet it turns out that it only matters that the NPV
β = V (c, r) of the chosen investment stream c at the external rate
r is nonzero. Eq. (∗∗∗) is of the same form as Eq. (∗∗) earlier, with
excess return α = k̄(c, r) − r and β = V (c, r), where c is given.
Because β (assumed nonzero) is fixed by the choice of c and Eq.
(∗∗) links α, β and V (x, r), Magni (2010, p. 160) points out that
therefore one needs to set

α =
V (x, r)
β

,

for the factorization in Eq. (∗∗) to hold. As in Appendix A.1, the
main result (Magni, 2010, Theorem 2, parts (i) and (ii)) is that
V (x, c) > 0 if and only if α and β have the same definite sign. The
factors α and β depend on r and the chosen investment stream c.
Fig. 8(b) provides an overview of the product approach by Magni
(2010), termed below ‘‘approach B’’, for evaluating the cash-flow
stream x at the external rate r .

A.3. Comparison to NPV-consistent return criteria

We now compare the product approaches outlined earlier to
PIR and selective IRR as investment criteria in terms of NPV-
consistency.
Approach A: by generalizing the product approach by Hazen (2003)
in Appendix A.2, we now show that it is possible to fix α in Eq. (∗∗)
to an arbitrary nonzero value, which we refer to as ‘‘approach A’’.
For this, consider any absolutely continuous investment stream c
on [0, T ] which satisfies an initial condition of the form

c(0) = c0, (25)

where the constant c0 is chosen such that

c(T ) = erT c0, (26)
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Fig. 8. Product approaches for V (x, r) = α · β: (a) fixing α; (b) fixing β .
in view of Eq. (24). The interpretation is that at the end of the
horizon the investment streammust exactly equal the future value
of its initial value compounded forward at the rate r . The project is
then neutral in the sense that while it is carried out a pre-existing
project balance−c0, which may have been carried over from some
other project, is simply compounded forward from time 0 to time T
(see footnote 32 for the relation between c and y). Using the more
general boundary conditions (25) and (26), the factorization in Eq.
(∗) obtains for any k, and not just for k ∈ I(x) when c0 = 0. With
this, the unique solution to the IVP (23) becomes (via the Cauchy
formula):

c(t) =


c0 −

 t

0
e−ksx(s)ds


ekt , ∀ t ∈ [0, T ].

Hence, at t = T the investment stream satisfies

c(T ) =


c0 −

 T

0
e−ktx(t)dt


ekT = (c0 − V (x, k)) ekT ;

that is, taking into account the endpoint condition (26),
ekT − erT


c0 = ekTV (x, k). (27)

The interpretation of condition (27) is that the future value of the
project at rate k (with cash-flow stream x) is equal to what the
initial value c0 of the investment stream would pay at rate k (in
the future, at time T ) if it was borrowed at rate r .

Hence, as long as k ≠ r , the investment stream

c(t) =


V (x, k)

1 − e−(k−r)T
−

 t

0
e−ksx(s)ds


ekt , ∀ t ∈ [0, T ],

by Eq. (24) also satisfies Eq. (∗), i.e.,

V (x, r) = (k − r)V (c, r). (∗)
For this now arbitrary rate k ≠ r the same investment rule applies
as in Hazen (2003, Theorem 4, parts (i) and (ii)). In the terminology
of Eq. (∗∗) this amounts to saying that if we fix an arbitrary α ≠ 0
and

V (x, r) = α · β, (∗∗)

then β = V (x, r)/α = V (c, r) and we should invest if α · β > 0.
It is not possible to glean additional information from the constant
k, other than that it is different from the known external rate r and
that the investment stream c has been chosen as a function of r and
k so as to be compatible with x.34

Approach B: just as approach A fixes α ≠ 0 in Eq. (∗∗), the product
approach byMagni (2010), referred to as ‘‘approach B’’, fixes β ≠ 0
through the choice of an investment stream c. In the case where
β = V (c, r) = 0 nothing can be concluded because the AIRR is not
well-defined as a return criterion. The use of approach B to evaluate
a given cash-flow stream x is summarized in Fig. 8(b).
Comparison to NPV-consistent return criteria. It is possible, by either
one of the two product approaches, to represent the NPV V (x, r)
of the cash-flow stream x as a product of two factors as in Eq.
(∗∗), in terms of α (excess return) and β (value of outstanding
capital), choosing one of the factors which then implies the other
factor. There may be practical reasons to suggest fixing one factor.
For example, Hazen (2003) by requiring that k be an internal rate
of return of x, it is V (x, k) = 0 and with c0 = 0 satisfies
condition (27) for any r , so the investment stream c becomes

34 The case where k = r , or equivalently α = 0, deserves special attention. Since
x and r are fixed, V (x, r) can in general be nonzero. When k = r , Eq. (∗∗) cannot
possibly hold as long as β is finite. Moreover, as k → r the investment stream
becomes unbounded, i.e., |β| = |V (c, r)| → ∞ as k → r . In particular, nothing
about the sign of V (x, r) can be concluded in that case.
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Fig. 9. NPV-consistent return criteria: (a) PIR; (b) selective IRR.
independent of r . The interpretation of an investment stream for
each element k ∈ I(x) may add some complementary insights;
it effectively considers (α, β) pairs whose product is constant.
Similarly, Magni (2010) allows for any investment stream, which
in some situations may be practically observed as invested capital
accompanying the cash-flow stream x. Fixing β = V (c, r) implies
an excess return α = V (x, r)/β , provided β ≠ 0. While both
approaches therefore add some flexibility to the interpretation of
project return, they lack intrinsic guidance about which return
characterizes the cash-flow stream x in the absence of additional
arguments and information.

The product approaches are in general not NPV-consistent in
the sense of Eq. (16): in approachA,α ≠ 0 is arbitrary and therefore
generally of a different sign than V (x, r); in approach B, β ≠ 0 is
arbitrary, so that α = V (x, r)/β has a different sign than V (x, r)
whenever β = V (c, r) < 0. Hence, unlike PIR and selective IRR
(see Fig. 9), in the absence of any additional information, the sign
of the excess return α in the product approaches cannot be used as
a decision criterion.35
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